In this paper, a Parallel Direct Eigensolver for Sequences of Hermitian Eigenvalue Problems with no tridiagonalization is proposed, denoted by \texttt{PDESHEP}, and it combines direct methods with iterative methods. \texttt{PDESHEP} first reduces a Hermitian matrix to its banded form, then applies a spectrum slicing algorithm to the banded matrix, and finally computes the eigenvectors of the original matrix via backtransform. Therefore, compared with conventional direct eigensolvers, \texttt{PDESHEP} avoids tridiagonalization, which consists of many memory-bounded operations. In this work, the iterative method in \texttt{PDESHEP} is based on the contour integral method implemented in FEAST. The combination of direct methods with iterative methods for banded matrices requires some efficient data redistribution algorithms both from 2D to 1D and from 1D to 2D data structures. Hence, some two-step data redistribution algorithms are proposed, which can be $10\times$ faster than ScaLAPACK routine \texttt{PXGEMR2D}. For the symmetric self-consistent field (SCF) eigenvalue problems, \texttt{PDESHEP} can be on average $1.25\times$ faster than the state-of-the-art direct solver in ELPA when using $4096$ processes. Numerical results are obtained for dense Hermitian matrices from real applications and large real sparse matrices from the SuiteSparse collection.


翻译:在本文中, 推荐了 Exmitian Eigenval 问题序列的平行直导 EigenalSolver, 没有三维方位化, 由\ textt{PDESHEP} 表示, 并将直接方法与迭代方法相结合。\ textt{PDESHEP} 首先将 Hermitian 矩阵缩放为带状形式, 然后将频谱剪切算法应用到带宽矩阵中, 最后通过后变法对原始矩阵的序列序列进行解析。 因此, 与常规直接的egensoltvers 相比,\ textt{PDESHEP} 避免了由许多内存限制操作组成的三维方位化。 在这项工作中,\ textt{PDEHEDE} 的迭接合方法与带宽度矩阵的迭代方法相结合, 需要从 2D 到 1D 和 2D 数据结构中一些高效的数据再分配算法。 因此, 双级数据再配置数据流的 RDRDRDRD 算算算算法, 用于 $rental- scial- realdrevaldrevental kalalalalalx 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员