We propose greedy and local search algorithms for rank-constrained convex optimization, namely solving $\underset{\mathrm{rank}(A)\leq r^*}{\min}\, R(A)$ given a convex function $R:\mathbb{R}^{m\times n}\rightarrow \mathbb{R}$ and a parameter $r^*$. These algorithms consist of repeating two steps: (a) adding a new rank-1 matrix to $A$ and (b) enforcing the rank constraint on $A$. We refine and improve the theoretical analysis of Shalev-Shwartz et al. (2011), and show that if the rank-restricted condition number of $R$ is $\kappa$, a solution $A$ with rank $O(r^*\cdot \min\{\kappa \log \frac{R(\mathbf{0})-R(A^*)}{\epsilon}, \kappa^2\})$ and $R(A) \leq R(A^*) + \epsilon$ can be recovered, where $A^*$ is the optimal solution. This significantly generalizes associated results on sparse convex optimization, as well as rank-constrained convex optimization for smooth functions. We then introduce new practical variants of these algorithms that have superior runtime and recover better solutions in practice. We demonstrate the versatility of these methods on a wide range of applications involving matrix completion and robust principal component analysis.
翻译:我们建议为低级限制的 convex 优化使用贪婪和本地搜索算法, 即解决 $underset_ mathrm{rk}(A)\leq r ⁇ min}}(A)\leq r ⁇ m\ times n ⁇ rightrow\mathb{R}$ 和一个参数$r ⁇ r}。 这些算法包括重复两个步骤:(a) 将新的排名-1矩阵添加到$A$上, (b) 对美元实施等级限制。我们改进并改进了对 Shalev- Shwartz 等人(2011) 的理论分析, 并显示如果降级限制条件为$R$:\\ kappa$, 则用排名为 $(r\cdob)\minkapb{R} 和 参数 $grog 的解决方案的解决方案, 我们的平整的平整的平流和平流成本分析 将展示为 最优的平流方法。