We study a weighted $\ell^1$-regularization technique for solving inverse problems when the forward operator has a significant nullspace. In particular, we prove that a sparse source can be exactly recovered as the regularization parameter $\alpha$ tends to zero. Furthermore, for positive values of $\alpha$, we show that the regularized inverse solution equals the true source multiplied by a scalar $\gamma$, where $\gamma = 1 - c\alpha$. Our analysis is supported by numerical experiments for cases with one and several local sources. This investigation is motivated by PDE-constrained optimization problems arising in connection with ECG and EEG recordings, but the theory is developed in terms of Euclidean spaces. Our results can therefore be applied to many problems.


翻译:当前方操作员有重大空域时,我们研究一种加权的1美元-1美元-正规化技术,以解决反向问题。特别是,我们证明,随着正规化参数为1美元-阿尔法元的趋向为零,稀有来源可以完全恢复。此外,对于正值美元-阿尔法元,我们表明,正规化的逆向解决办法等于真实来源乘以1美元-伽马元,即$-伽玛=1-c\阿尔法元。我们的分析得到一个和几个本地来源案件的数字实验的支持。这一调查的动机是ECG和EEG录音中出现的受PDE限制的优化问题,但理论是从Euclidean空间发展出来的。因此,我们的结果可以应用于许多问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员