In large-scale multiple hypothesis testing problems, the false discovery exceedance (FDX) provides a desirable alternative to the widely used false discovery rate (FDR) when the false discovery proportion (FDP) is highly variable. We develop an empirical Bayes approach to control the FDX. We show that, for independent hypotheses from a two-group model and dependent hypotheses from a Gaussian model fulfilling the exchangeability condition, an oracle decision rule based on ranking and thresholding the local false discovery rate (lfdr) is optimal in the sense that the power is maximized subject to the FDX constraint. We propose a data-driven FDX procedure that uses carefully designed computational shortcuts to emulate the oracle rule. We investigate the empirical performance of the proposed method using both simulated and real data and study the merits of FDX control through an application for identifying abnormal stock trading strategies.
翻译:在大规模多重假设测试问题中,虚假发现超额(FDX)为广泛使用的虚假发现率提供了可取的替代方法,因为虚假发现比例(FDP)变化很大。我们制定了一种经验性贝耶控制FDX的方法。我们证明,对于两组模型的独立假设和高斯模式符合易交换条件的依附假设,基于当地虚假发现率(lfdr)的等级和门槛的甲骨文决定规则是最佳的,因为受FDX制约,这种能力是最大限度的。我们建议采用数据驱动的FDX程序,使用精心设计的计算快捷方式来效仿Orcle规则。我们调查使用模拟和真实数据的拟议方法的经验性表现,并通过应用查明异常股票交易战略来研究FDX控制的好处。