We study fully dynamic algorithms for maximum matching. This is a well-studied problem, known to admit several update-time/approximation trade-offs. For instance, it is known how to maintain a 1/2-approximate matching in (polylog n) time or a $2/3$-approximate matching in $O(\sqrt{n})$ time, where $n$ is the number of vertices. Improving either of these bounds has been a long-standing open problem. In this paper, we show that when the goal is to maintain just the size of the matching instead of its edge-set, then these bounds can indeed be improved. We give algorithms that maintain * a .501-approximation in (polylog n) update-time for general graphs, * a .534-approximation in (polylog n) update-time for bipartite graphs, and * a $(\frac{2}{3} + \Omega(1))$-approximation in $O(\sqrt{n})$ update-time for bipartite graphs.
翻译:为最大匹配而研究完全动态的算法。 这是一个研究周密的问题, 众所周知, 以接受多个更新时间/ 近似比对取法。 例如, 已知如何在( polylog n) 时间或2/3美元- 近似比对( $O (\ sqrt{ n}) 时间, 美元是 o( polylog n) 时间) 中保持一个 1/2 的近似匹配。 改善这两个边框都是长期存在的问题 。 在本文中, 我们显示, 当目标是保持匹配的大小而不是它的边缘设置时, 这些界限确实可以改进 。 我们给出的算法在( polylog n) 时间中保持 * 501- ocol- opproximation, * 在( polylog n) 中保持一个 534- approximation, 以及 * (\\ \ {\\\\\\\\\\\ 3} +\ a mega ( $- approximme) bipart bipart glas) prage.