We present a Lagrangian-Eulerian scheme to solve the shallow water equations in the case of spatially variable bottom geometry. Using a local curvilinear reference system anchored on the bottom surface, we develop an effective first-order and high-resolution space-time discretization of the no-flow surfaces and solve a Lagrangian initial value problem that describes the evolution of the balance laws governing the geometrically intrinsic shallow water equations. The evolved solution set is then projected back to the original surface grid to complete the proposed Lagrangian-Eulerian formulation. The resulting scheme maintains monotonicity and captures shocks without providing excessive numerical dissipation also in the presence of non-autonomous fluxes such as those arising from the geometrically intrinsic shallow water equation on variable topographies. We provide a representative set of numerical examples to illustrate the accuracy and robustness of the proposed Lagrangian-Eulerian formulation for two-dimensional surfaces with general curvatures and discontinuous initial conditions.
翻译:我们提出了一个Lagrangian-Eularian方案,以解决空间可变海底几何中浅水方程式中的浅水方程式。我们利用一个固定在底表的本地曲线参考系统,开发一个有效的无水流表面第一阶和高分辨率空间时间分解系统,并解决一个Lagrangian初步价值问题,其中描述指导几何内在浅水方程式的平衡法的演变情况。然后,将进化的解决方案集回原始表面网格,以完成拟议的Lagrangian-Eularian配方程式。由此产生的方案保持单调和捕捉冲击,而没有同时在非自主通量的通量中提供过量的消散现象,如不同地形上的几何固有浅水方程式所产生的现象。我们提供了一组具有代表性的例证,以说明拟议的Lagragangian-Eulurian配方的精度和坚固度,用于具有一般曲度和不连续初始条件的二维面面面面。