In this paper, we propose a cross-modal distillation method named StereoDistill to narrow the gap between the stereo and LiDAR-based approaches via distilling the stereo detectors from the superior LiDAR model at the response level, which is usually overlooked in 3D object detection distillation. The key designs of StereoDistill are: the X-component Guided Distillation~(XGD) for regression and the Cross-anchor Logit Distillation~(CLD) for classification. In XGD, instead of empirically adopting a threshold to select the high-quality teacher predictions as soft targets, we decompose the predicted 3D box into sub-components and retain the corresponding part for distillation if the teacher component pilot is consistent with ground truth to largely boost the number of positive predictions and alleviate the mimicking difficulty of the student model. For CLD, we aggregate the probability distribution of all anchors at the same position to encourage the highest probability anchor rather than individually distill the distribution at the anchor level. Finally, our StereoDistill achieves state-of-the-art results for stereo-based 3D detection on the KITTI test benchmark and extensive experiments on KITTI and Argoverse Dataset validate the effectiveness.
翻译:在本文中,我们提出一种名为StereoDistilling的跨现代蒸馏方法,以缩小立体和以立体雷达为基础的立体蒸馏方法之间的差距,办法是在响应层面将高级激光雷达模型的立体探测器从高级立体雷达模型中蒸馏出来,这通常在3D物体探测蒸馏中被忽视。立体蒸馏的关键设计是:用于回归的X-成分引导蒸馏~(XGD)和用于分类的交叉锚定点蒸馏~(CLD)。在XGD中,我们没有以经验方式采用一个阈值来选择高质量的教师预测作为软目标,而是将预测的3D盒分解成次级组件,并保留相应的部分,用于蒸馏,如果教师部分试点与地面真理一致,以在很大程度上增加积极预测的数量,减轻学生模型的模拟困难。关于这个位置的所有锚定点的概率分布,以便鼓励最高概率锚定,而不是单独在锚定点水平上蒸馏分布。最后,我们将预测的3D(Sterivodist)将预测的3D方框试验结果用于州-艺术试验,并广泛验证基基基基的基测测数据库。