The SLAM system based on static scene assumption will introduce huge estimation errors when moving objects appear in the field of view. This paper proposes a novel multi-object dynamic lidar odometry (MLO) based on semantic object detection technology to solve this problem. The MLO system can provide reliable localization of robot and semantic objects and build long-term static maps in complex dynamic scenes. For ego-motion estimation, we use the environment features that take semantic and geometric consistency constraints into account in the extraction process. The filtering features are robust to semantic movable and unknown dynamic objects. At the same time, a least square estimator using the semantic bounding box and object point cloud is proposed to achieve accurate and stable multi-object tracking between frames. In the mapping module, we further realize dynamic semantic object detection based on the absolute trajectory tracking list (ATTL). Then, static semantic objects and environmental features can be used to eliminate accumulated localization errors and build pure static maps. Experiments on public KITTI data sets show that the proposed system can achieve more accurate and robust tracking of the object and better real-time localization accuracy in complex scenes compared with existing technologies.
翻译:以静态场景假设为基础的 SLAM 系统将带来巨大的估计错误, 当移动物体出现在视野中时, 将会出现巨大的估计错误。 本文提出基于语义物体探测技术的新型多物体动态里达尔odorma( MLO) 。 MLO 系统可以提供机器人和语义物体的可靠本地化, 并在复杂的动态场景中建立长期静态地图。 为了进行自我移动估计, 我们使用环境特征, 在提取过程中考虑到语义和几何一致性限制。 过滤功能对于语义动产和未知的动态天体是强大的。 与此同时, 提议使用语义捆绑框和天体点云来实现准确和稳定的多点跟踪图案。 在绘图模块中, 我们进一步实现基于绝对轨迹跟踪列表( ATTL) 的动态语义物体探测。 然后, 静态的语义物体和环境特征可以用来消除累积的本地化错误, 并构建纯静态的地图。 在公共 KITTI 数据集上进行的实验表明, 拟议的系统可以实现更准确和更好的真实的图像比较。</s>