We propose a sampling method based on an ensemble approximation of second order Langevin dynamics. The log target density is appended with a quadratic term in an auxiliary momentum variable and damped-driven Hamiltonian dynamics introduced; the resulting stochastic differential equation is invariant to the Gibbs measure, with marginal on the position coordinates given by the target. A preconditioner based on covariance under the law of the dynamics does not change this invariance property, and is introduced to accelerate convergence to the Gibbs measure. The resulting mean-field dynamics may be approximated by an ensemble method; this results in a gradient-free and affine-invariant stochastic dynamical system. Numerical results demonstrate its potential as the basis for a numerical sampler in Bayesian inverse problems.
翻译:我们提出一种基于第二顺序兰格文动态的混合近似值的抽样方法。 日志目标密度在辅助动力变量中加上一个二次词, 并引入了阻隔驱动的汉密尔顿动力; 由此产生的随机差异方程式与Gibbs测量值不相容, 目标给出的位置坐标上则处于边际。 基于动态法则下的共同变量的先决条件并不改变这种差异属性, 并引入了加速与Gibbs测量值趋同的前提。 由此形成的平均场动态可能以共通方法相近; 结果是形成无梯度和折合异性随机动态系统。 数值结果显示它作为拜斯反问题数字采样器的基础的潜力。