We propose to use L\'evy {\alpha}-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices {\alpha} = 1, and {\alpha} = 2, respectively. Our target is to show that these priors provide a rich class of priors for modelling rough features. The main technical issue is that the {\alpha}-stable probability density functions do not have closed-form expressions in general, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. Current available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments needed in Bayesian inversion. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate {\alpha}-stable distributions, which is both fast to evaluate, and accurate enough from a practical viewpoint. Then we use approximation method in the numerical implementation of {\alpha}-stable random field priors. We demonstrate the applicability of the constructed priors on selected Bayesian inverse problems which include the deconvolution problem, and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical {\alpha}-stable priors in the one-dimensional deconvolution problem. We employ maximum-a-posterior-based estimation at all the numerical examples. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.
翻译:我们提议使用L\'evy phalpha} 稳定分布法, 用于为 Bayesian 反向问题构建前置文件。 构建时以Markov 字段为基础, 并稳定分布。 特殊案例包括 Cauchy 和 Gaussian 分布, 稳定指数= 1 和 halpha} = 2 。 我们的目标是显示这些前置版本为建模粗糙特征提供了丰富的前置版本。 主要的技术问题是 ralpha} 最强概率函数没有一般的封闭式表达, 因而限制了它们的可适用性。 为了实际目的, 我们需要通过数字整合或序列扩展来近似概率密度函数。 目前可用的近似方法要么太耗时, 也不在Bayesian 反向的稳定性和半径角参数范围内运行。 为了解决这个问题, 我们提出了一个新的混合近似近似方法, 用于对不正数 直位的 直位值 直位值 和正位变量分布, 既能快速地评估, 也无法从一个实际角度来准确。 然后, 我们使用前方位的直位的直径对位工具, 。 在前的平位工具中显示先前的直位的直位的直位工具。 。