In this work, we study the numerical solution of inverse eigenvalue problems from a machine learning perspective. Two different problems are considered: the inverse Strum-Liouville eigenvalue problem for symmetric potentials and the inverse transmission eigenvalue problem for spherically symmetric refractive indices. Firstly, we solve the corresponding direct problems to produce the required eigenvalues datasets in order to train the machine learning algorithms. Next, we consider several examples of inverse problems and compare the performance of each model to predict the unknown potentials and refractive indices respectively, from a given small set of the lowest eigenvalues. The supervised regression models we use are k-Nearest Neighbours, Random Forests and Multi-Layer Perceptron. Our experiments show that these machine learning methods, under appropriate tuning on their parameters, can numerically solve the examined inverse eigenvalue problems.
翻译:在这项工作中,我们从机器学习的角度来研究逆电子价值问题的数字解决办法。我们考虑了两个不同的问题:对称潜力的反斯特鲁姆-利乌维尔的对称价值问题和对称对称折变指数的反传导的对称价值问题。首先,我们解决相应的直接问题,以产生所需的电子价值数据集,从而培训机器学习算法。接下来,我们考虑几个反向问题的例子,比较每个模型的性能,以预测最低电子价值的一小组未知潜力和反射指数。我们使用的受监督回归模型是k-Nearest邻居、随机森林和多Layer Perpheron。我们的实验表明,这些机器学习方法,在对其参数进行适当调整的情况下,可以用数字方式解决所审查的反电子价值问题。