Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by ``exploding variance'' in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding variance and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement without compromising performance.
翻译:条件正常的流程可以产生不同的图像样本来解决反面问题。 成像中反问题流的多数正常化流动都使用有条件的同系结层,可以快速生成不同图像。 但是,偶尔在它们的输出中会观察到意外的严重文物。 在这项工作中,我们通过调查这些文物的起源并提出避免这些文物的条件来解决这一关键问题。 首先,我们从经验上和理论上揭示,这些问题是由以下因素造成的:在有条件的同系结层中,某些分发(OOOOD)条件性投入在有条件的同系结层中“爆炸差异”造成的。然后,我们进一步证实,在像素中造成错误文物的可能性与在成像中出现反面问题的Mahalanobis远程OOOD分数高度相关。最后,我们根据我们的调查,提出一个避免差异爆炸性的评论,然后在此基础上,我们建议一个简单的补救办法,用经修改的理性二次二次曲线交错的相交错层层来替代,鼓励生成图像样品的稳健健。 我们的实验结果表明,我们所建议的方法有效地抑制了在正常的生成中降低空间图像。