We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained and the position at a given (constant) time of an exponentially tempered L\'evy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb guidelines for users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
翻译:我们为矢量开发了一个全新的蒙特卡洛算法,它由超模量、达到超模量的时间和在一个指数性低温L\\'evy过程的给定(固定)时间的位置组成。基于过程的增量而没有减温,这种算法使矢量的不连续功能和局部Lipschitz函数的几何速度(作为计算成本的函数)趋同。我们证明相应的多层次蒙特卡洛顶点计算器具有最佳的计算复杂性(即如果平均正方差误差最高为$qualepsilon ⁇ 2美元,则其在给定(固定)时间的位置),并提供其中心参数。利用CLT,我们为屏障选择价格和各种风险措施构建了信任间隔,而根据温和稳定(CGMY)模型根据真实世界数据校准/估计的减速。我们为用户提供了与现有近似值的算法的非抽取和淡取性比较(即为$$quar-thumb准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则准则2,并用数字分析了最佳方法的模型说明。