In this paper, I propose a new class of Zero-Inflated Poisson models into the family of Cluster Weighted Models (CWMs) called Zero-Inflated Poisson CWMs (ZIPCWM). ZIPCWM extends Poisson cluster weighted models and other mixture models. I propose an Expectation-Maximization (EM) algorithm via an iteratively reweighted least squares for the model. I theoretically and analytically investigate the identifiability of the proposed model through an extensive simulation study. Parameter recovery, classification assessment, and performance of different information criteria are investigated through broad simulation design. ZIPCWM is applied to real data which accounts for excess zeros of over $40\%$. We explore the classification performance of ZIPCWM, Fixed Zero-inflated Poisson mixture model (FZIP), and Poisson cluster weighted model (PCWM) on the data. Based on the confusion matrix, ZIPCWM achieves $97.4\%$ classification power, PCWM achieves $67.30\%$, while FZIP has the worst classification performance. In conclusion, ZIPCWM outperforms both PCWM and FZIP models.
翻译:在本文中,我提议在集群加权模型组(CWM)中增加一个新的零充气波斯森模型(ZIPCWM),称为零充气波斯森CWM(ZIPCWM),ZIPCWM扩展 Poisson群集加权模型和其他混合模型,我提议通过该模型的迭代再加权最小方块进行期望-最大方块算法;通过广泛的模拟研究,从理论上和分析上调查拟议模型的可识别性;通过广泛的模拟设计,对不同信息标准的恢复、分类评估和性能进行调查;ZIPCWM用于计算超额40美元的实际数据;我们探讨ZIPCWM、固定零充气波斯森混合模型(FZIP)和Poisson组合加权模型(PCWMM)的分类性能;根据混乱矩阵,ZIPCM达到97.4美元分类能力,PCWM达到67.30美元,而FZIPZM两个模型都是最差的。