The $3$SUM-Indexing problem was introduced as a data structure version of the $3$SUM problem, with the goal of proving strong conditional lower bounds for static data structures via reductions. Ideally, the conjectured hardness of $3$SUM-Indexing should be replaced by an unconditional lower bound. Unfortunately, we are far from proving this, with the strongest current lower bound being a logarithmic query time lower bound by Golovnev et al. from STOC'20. Moreover, their lower bound holds only for non-adaptive data structures and they explicitly asked for a lower bound for adaptive data structures. Our main contribution is precisely such a lower bound against adaptive data structures. As a secondary result, we also strengthen the non-adaptive lower bound of Golovnev et al. and prove strong lower bounds for $2$-bit-probe non-adaptive $3$SUM-Indexing data structures via a completely new approach that we find interesting in its own right.


翻译:3$SUM- Indexing 问题被引入为3$SUM问题的数据结构版本,目的是通过减少来证明静态数据结构的严格条件下限。 理想的情况是,3$SUM- Indexing的假设硬度应该被无条件的下限所取代。 不幸的是,我们远远没有证明这一点,最强的当前下限是来自STOC'20的Golovnev等人的对数查询时间较低。 此外,它们较低的约束线只对非适应性数据结构有效,它们明确要求对适应性数据结构采用较低的约束线。 我们的主要贡献恰恰是相对于适应性数据结构的制约范围较小。 作为次要结果,我们还加强了Golovnev等人的非适应性较低约束线,并通过一种我们发现本身很有意思的全新方法,证明对2美元位- probe非适应性3$SUM- Indexmination数据结构有很强的下限。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月9日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员