This paper extends the high-order entropy stable (ES) adaptive moving mesh finite difference schemes developed in [14] to the two- and three-dimensional (multi-component) compressible Euler equations with the stiffened equation of state. The two-point entropy conservative (EC) flux is first constructed in the curvilinear coordinates. The high-order semi-discrete EC schemes are given with the aid of the two-point EC flux and the high-order discretization of the geometric conservation laws, and then the high-order semi-discrete ES schemes satisfying the entropy inequality are derived by adding the high-order dissipation term based on the multi-resolution weighted essentially non-oscillatory (WENO) reconstruction for the scaled entropy variables to the EC schemes. The explicit strong-stability-preserving Runge-Kutta methods are used for the time discretization and the mesh points are adaptively redistributed by iteratively solving the mesh redistribution equations with an appropriately chosen monitor function. Several 2D and 3D numerical tests are conducted on the parallel computer system with the MPI programming to validate the accuracy and the ability to capture effectively the localized structures of the proposed schemes.


翻译:本文扩展了在[14] 中制定的高顺序适应性活性移动网状差异(ES)稳定网状(ES)适应性移动网状差异方案,将其延伸至以硬度方程式为基础的二维和三维(多构件)压缩 Euler 等式。两点偏偏保守(EC)通量首先建在曲线线坐标处。高序半分异EC方案在两点EC通量和几何保护法高度分解的帮助下实施,然后通过添加基于多分辨率加权基本上非悬浮(WENO)的多分级分级分级分解(高分解)埃利(ES)等式高序分级半分解(ES)计划,通过添加基于多分制加权基本上非悬浮的(WENO)等式等式高序分解(EU)等式(EU)等式等式。高序半分解(ERS)通量半分解(E)通量半分解(E)通通通量半分流(E-E-EC-EC-E-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-EC-ES-ES-E-E-E-E-E-E)方案)方案,然后通过迭接合调和高序分解(E-E-ES-ES-ES-E-E-E-E-ES-E-S-S-S-E-E-E-E-E-E-E-E-E-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员