We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
翻译:我们提出了一个新的图像倒置框架和一个培训管道,目的是通过高质量的属性编辑实现高不忠图像倒置。将真实图像倒置到StyleGAN的潜在空间是一个广泛研究的问题,但图像重建忠贞和图像编辑质量之间的权衡仍然是一个公开的挑战。低率潜伏空间在高不忠重建的表达力方面是有限的。另一方面,高率潜伏空间导致编辑质量的退化。在这项工作中,为了实现高不忠性倒置,我们学习了高潜值代码中的残余特征,低潜值代码无法编码。这有利于在重建中保存图像细节。为了实现高质量的编辑,我们学会如何将残余特征转换为对潜值代码的操纵。我们训练框架,以提取残余特征,并通过新的建筑管道和循环一致性损失来改造这些特征。我们进行了广泛的实验,并将我们的方法与最先进的反向方法进行比较。定性的测量和视觉比较显示显著的改进。 代码: https://github.com/hamzali/Resyletyle。