Using newly developed ${\bf H}(\mathrm{curl}^2)$ conforming elements, we solve the Maxwell's transmission eigenvalue problem. Both real and complex eigenvalues are considered. Based on the fixed-point weak formulation with reasonable assumptions, the optimal error estimates for numerical eigenvalues and eigenfunctions (in the ${\bf H}(\mathrm{curl}^2)$-norm and ${\bf H}(\mathrm{curl})$-semi-norm) are established.
翻译:使用新开发的 $bf H}(\ mathrm{ curl ⁇ 2) 符合元素, 我们解决 Maxwell 传输的 egenvaly 问题 。 既考虑真实的, 也考虑复杂的 egenvaly 。 基于固定点薄弱的配方, 并有合理的假设, 数字 egenvaly 和 egencondictions 的最佳误差估计值( $\ bf H} (\ mathrm{ curl ⁇ 2) 、 $- norm 和 $ bf H} (\ mathrm{ curl}) $- semi- norm) 。