We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.
翻译:我们建议对一个适当的多面形P(x, y)的局部最小化(可能是不连续的)微米p(x, y)所设定的契约的多变函数 f (x) 进行近似(可能是不连续的)多变函数 f(x), 该函数的构造可以在一个正方形(SOS)的单方和数框架中投放, 从而形成一个结构高度结构化的二次曲线半非定点程序 。 在一些非三重的案例中( 例如, 当 f 是一块小的多面形体时), 我们证明近似与低度多元性p( p. 我们的方法是精确的。 我们的方法有三个不同的特征 :(i) 它是无网状的, 不需要对不连续地点的了解 。 (ii) 这是没有模式的, 因为我们仅仅假设通过样本( 点评价) 来提供大致的函数。 (iii) 半面形体型方案的规模独立于环境维度, 并且以线性取决于样本的数量。 我们还分析该方法的样本复杂性, 证明在一种可比较性环境下存在一般的错误。这允许与机器学习方法进行比较。