Comparative Judgement (CJ) provides an alternative assessment approach by evaluating work holistically rather than breaking it into discrete criteria. This method leverages human ability to make nuanced comparisons, yielding more reliable and valid assessments. CJ aligns with real-world evaluations, where overall quality emerges from the interplay of various elements. However, rubrics remain widely used in education, offering structured criteria for grading and detailed feedback. This creates a gap between CJ's holistic ranking and the need for criterion-based performance breakdowns. This paper addresses this gap using a Bayesian approach. We build on Bayesian CJ (BCJ) by Gray et al., which directly models preferences instead of using likelihoods over total scores, allowing for expected ranks with uncertainty estimation. Their entropy-based active learning method selects the most informative pairwise comparisons for assessors. We extend BCJ to handle multiple independent learning outcome (LO) components, defined by a rubric, enabling both holistic and component-wise predictive rankings with uncertainty estimates. Additionally, we propose a method to aggregate entropies and identify the most informative comparison for assessors. Experiments on synthetic and real data demonstrate our method's effectiveness. Finally, we address a key limitation of BCJ, which is the inability to quantify assessor agreement. We show how to derive agreement levels, enhancing transparency in assessment.
翻译:暂无翻译