There is extensive interest in metric learning methods for image retrieval. Many metric learning loss functions focus on learning a correct ranking of training samples, but strongly overfit semantically inconsistent labels and require a large amount of data. To address these shortcomings, we propose a new metric learning method, called contextual loss, which optimizes contextual similarity in addition to cosine similarity. Our contextual loss implicitly enforces semantic consistency among neighbors while converging to the correct ranking. We empirically show that the proposed loss is more robust to label noise, and is less prone to overfitting even when a large portion of train data is withheld. Extensive experiments demonstrate that our method achieves a new state-of-the-art across four image retrieval benchmarks and multiple different evaluation settings. Code is available at: https://github.com/Chris210634/metric-learning-using-contextual-similarity
翻译:对图像检索的计量学习方法的兴趣很大。 许多计量学习损失功能侧重于学习正确的培训样本排名,但明显地超置了内容不一致的标签,并需要大量数据。为了解决这些缺陷,我们提议了一种新的计量学习方法,称为背景损失,除了对相近性外,还优化了背景相似性。我们的背景损失意味着邻居之间在语义上的一致性,同时与正确的排名相融合。我们从经验上表明,拟议的损失对标签噪音来说更为有力,即使在大量火车数据被扣留的情况下,也不太容易过度。广泛的实验表明,我们的方法在四个图像检索基准和多个不同的评价环境之间达到了新的最先进的水平。守则可在以下网址查阅:https://github.com/Chris210634/decal-learning-use-context-colity。