Stuttering is a neuro-developmental speech impairment characterized by uncontrolled utterances (interjections) and core behaviors (blocks, repetitions, and prolongations), and is caused by the failure of speech sensorimotors. Due to its complex nature, stuttering detection (SD) is a difficult task. If detected at an early stage, it could facilitate speech therapists to observe and rectify the speech patterns of persons who stutter (PWS). The stuttered speech of PWS is usually available in limited amounts and is highly imbalanced. To this end, we address the class imbalance problem in the SD domain via a multibranching (MB) scheme and by weighting the contribution of classes in the overall loss function, resulting in a huge improvement in stuttering classes on the SEP-28k dataset over the baseline (StutterNet). To tackle data scarcity, we investigate the effectiveness of data augmentation on top of a multi-branched training scheme. The augmented training outperforms the MB StutterNet (clean) by a relative margin of 4.18% in macro F1-score (F1). In addition, we propose a multi-contextual (MC) StutterNet, which exploits different contexts of the stuttered speech, resulting in an overall improvement of 4.48% in F 1 over the single context based MB StutterNet. Finally, we have shown that applying data augmentation in the cross-corpora scenario can improve the overall SD performance by a relative margin of 13.23% in F1 over the clean training.


翻译:Stusting是神经发育性言语障碍,其特点是无节制的言语(干扰)和核心行为(阻力、重复和延长),其原因是语言感官器的失败。由于其性质复杂,对声震检测(SD)是一项艰巨的任务。如果在早期阶段检测到,它可以便利言语治疗师观察和纠正口吃者(PWS)的言语模式。PWS的言语松散通常数量有限,而且高度不平衡。为此,我们通过多功能(MB)计划,通过在总体损失功能中加权各等级的贡献,解决SEP-28k数据集(StutterNet)的震动类是一个巨大的困难任务。为了解决数据短缺问题,我们调查了数据增强在多功能培训计划之上的效果。强化培训比MB StutterNet(清洁)的言词量要低4.18%,在宏观F1-B(F1)中将各等级的言行各行各行各行各业的言行各业之间相对差距(F1),因此我们提议在总体的Stual-481中进行多功能的改进。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员