While rigid robots are extensively used in various applications, they are limited in the tasks they can perform and can be unsafe in close human-robot interactions. Soft robots on the other hand surpass the capabilities of rigid robots in several ways, such as compatibility with the work environments, degrees of freedom, manufacturing costs, and safe interactions with the environment. This thesis studies the behavior of Fiber Reinforced Elastomeric Enclosures (FREEs) as a particular type of soft pneumatic actuator that can be used in soft manipulators. A dynamic lumped-parameter model is created to simulate the motion of a single FREE under various operating conditions and to inform the design of a controller. The proposed PID controller determines the response of the FREE to a defined step input or a trajectory following polynomial function, using rotation angle to control the orientation of the end-effector. Additionally, Finite Element Analysis method is employed, incorporating the inherently nonlinear material properties of FREEs, to precisely evaluate various parameters and configurations of FREEs. This tool is also used to determine the workspace of multiple FREEs in a module, which is essentially a building block of a soft robotic arm.
翻译:虽然硬机器人在各种应用中广泛使用,但在它们能够执行的任务方面有限,在密切的人类-机器人相互作用中可能不安全。软机器人以多种方式,例如与工作环境兼容性、自由度、制造成本以及与环境的安全互动等,超越硬机器人的能力。该论文研究Fiber增强弹性弹性壁(FFFEEE)的行为,作为可用于软操作器的某种软气动导体。创建了一个动态的单幅参数模型,以模拟单个FEE在各种操作条件下的动作,并为控制器的设计提供参考。拟议的PID控制器决定FEEE对一个固定步骤输入的反应,或多元函数之后的轨迹,使用旋转角度来控制终端效应的方向。此外,还采用了FIEEE(FEEE)系统本身的非线性材料特性,以精确评估FEEEE的各种参数和配置。该工具还用于确定一个软性模块的多个FEEEEEE单元的工作空间,该模块基本上是一个软性模块。