Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking. However, it suffers from parametric uncertainties, since it directly relies on the mathematical model of the system to predict the optimal switching states to be used at the next sampling time. As a result, uncertain parameters lead to an ill-designed MPC. Thus, this paper offers a model-free control strategy on the basis of artificial neural networks (ANNs), for mitigating the effects of parameter mismatching while having a little negative impact on the inverter's performance. This method includes two related stages. First, MPC is used as an expert to control the studied converter in order to provide a dataset, while, in the second stage, the obtained dataset is utilized to train the proposed ANN. The case study herein is based on a four-level three-cell flying capacitor inverter. In this study, MATLAB/Simulink is used to simulate the performance of the proposed method, taking into account various operating conditions. Afterward, the simulation results are reported in comparison with the conventional MPC scheme, demonstrating the superior performance of the proposed control strategy in terms of robustness against parameters mismatch and low total harmonic distortion (THD), especially when changes occur in the system parameters, compared to the conventional MPC. Furthermore, the experimental validation of the proposed method is provided based on the Hardware-in-the-Loop (HIL) simulation using the C2000TM-microcontrollerLaunchPadXL TMS320F28379D kit, demonstrating the applicability of the ANN-based control strategy to be implemented on a DSP controller.
翻译:由于其简单的概念、快速动态反应和良好的参考跟踪,模型预测控制(MPC)在电动电子中被广泛使用,由于其简单的概念、快速动态反应和良好的参考跟踪,模型预测控制(MPC)被广泛用于电动电子中,但是,由于它直接依靠该系统的数学模型来预测下一个取样时使用的最佳切换状态,因此模型预测控制(MPC)被广泛使用。结果,不确定的参数导致设计错误的 MCC。因此,本文件提供了一个基于人工神经网络(ANNS)的无模型控制战略,以减轻参数错配的影响,同时对倒转器的性能略有负面影响。这一方法包括两个相关的阶段。首先,MPC被作为专家用来控制所研究的转换器,以便提供数据集,而在第二个阶段,获得的数据集被用来培训拟议的ANNC。 因此,基于四级三电离子飞行电容器电容器的案例研究(ATLAB/Simullinink) 用于模拟拟议方法的性能,同时考虑到各种操作条件。随后,将模拟结果用于控制TX-L-RMS-S-S-S-S-Ralalalal 战略的精确比照,在常规的精确控制计划上,在较强的SL-L-SL-L-SL-SL-SL-SL-Servial-Serg-Servial-Supal-Servi 上,在比上,在比较性战略中,在比较了拟议的C-S-S-S-S-S-S-S-S-Serg-L-Serv-L-L-L-Serg-Serval-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Supal-Serv-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-