We propose a new fast fully unsupervised method to discover semantic patterns. Our algorithm is able to hierarchically find visual categories and produce a segmentation mask where previous methods fail. Through the modeling of what is a visual pattern in an image, we introduce the notion of "semantic levels" and devise a conceptual framework along with measures and a dedicated benchmark dataset for future comparisons. Our algorithm is composed by two phases. A filtering phase, which selects semantical hotsposts by means of an accumulator space, then a clustering phase which propagates the semantic properties of the hotspots on a superpixels basis. We provide both qualitative and quantitative experimental validation, achieving optimal results in terms of robustness to noise and semantic consistency. We also made code and dataset publicly available.
翻译:我们提出了一种新的快速完全不受监督的发现语义模式的新方法。 我们的算法能够从等级上找到视觉分类, 并在先前方法失败的地方生成一个分割面。 通过在图像中建模什么是视觉模式, 我们引入了“ 语义级别” 的概念, 并设计了一个概念框架, 以及一些措施和专门的基准数据集, 以便将来进行比较。 我们的算法由两个阶段组成。 一个过滤阶段, 通过累积空间选择语义性热柱, 然后是一个集群阶段, 在超级像素的基础上传播热点的语义特性。 我们提供质和量的实验验证, 在噪音的稳健性和语义一致性方面实现最佳效果。 我们还公开了代码和数据设置 。