This paper proposes a novel algorithm for training recurrent neural network models of nonlinear dynamical systems from an input/output training dataset. Arbitrary convex and twice-differentiable loss functions and regularization terms are handled by sequential least squares and either a line-search (LS) or a trust-region method \`a la Levenberg-Marquardt (LM) for ensuring convergence. In addition, to handle non-smooth regularization terms such as $\ell_1$, $\ell_0$, and group-Lasso regularizers, as well as to impose possibly non-convex constraints such as integer and mixed-integer constraints, we combine sequential least squares with the alternating direction method of multipliers (ADMM). We call the resulting algorithm NAILS (nonconvex ADMM iterations and least squares) in the case line search (LS) is used, or NAILM if a trust-region method (LM) is employed instead. The training method, which is also applicable to feedforward neural networks as a special case, is tested in two nonlinear system identification problems.
翻译:本文提出了用于培训来自投入/产出培训数据集的非线性动态系统的经常性神经网络模型的新算法。 任意共和和两次差异性损失函数和正规化条件由顺序最小方形处理, 由线性搜索或信任区域方法 ⁇ a la Levenberg- Marquardt (LM) 来保证趋同。 此外, 处理非线性正规化条件, 如$\ ell_ 1美元、 $\ ell_ 0美元、 集团- Lasso 管理器等非线性术语, 以及施加可能的非线性约束, 如整数和混合整数限制, 我们将顺序最小方形与交替的乘数方向方法( ADMM) 合并。 我们称在案件线性搜索中使用了相应的NAILS 算法( nonconvex Admicerations 和最小方形), 或在采用信任区域方法 (LM) 的情况下, NAILM 。 在两个非线性系统识别问题中测试了培训方法, 。