Specification inference techniques aim at (automatically) inferring a set of assertions that capture the exhibited software behaviour by generating and filtering assertions through dynamic test executions and mutation testing. Although powerful, such techniques are computationally expensive due to a large number of assertions, test cases and mutated versions that need to be executed. To overcome this issue, we demonstrate that a small subset, i.e., 12.95% of the mutants used by mutation testing tools is sufficient for assertion inference, this subset is significantly different, i.e., 71.59% different from the subsuming mutant set that is frequently cited by mutation testing literature, and can be statically approximated through a learning based method. In particular, we propose AIMS, an approach that selects Assertion Inferring Mutants, i.e., a set of mutants that are well-suited for assertion inference, with 0.58 MCC, 0.79 Precision, and 0.49 Recall. We evaluate AIMS on 46 programs and demonstrate that it has comparable inference capabilities with full mutation analysis (misses 12.49% of assertions) while significantly limiting execution cost (runs 46.29 times faster). A comparison with randomly selected sets of mutants, shows the superiority of AIMS by inferring 36% more assertions while requiring approximately equal amount of execution time. We also show that AIMS 's inferring capabilities are almost complete as it infers 96.15% of ground truth assertions, (i.e., a complete set of assertions that were manually constructed) while Random Mutant Selection infers 19.23% of them. More importantly, AIMS enables assertion inference techniques to scale on subjects where full mutation testing is prohibitively expensive and Random Mutant Selection does not lead to any assertion.


翻译:具体化技术旨在( 自动) 推断一组通过动态测试处决和突变测试生成和过滤显示显示的软件行为, 从而通过动态测试处决和突变测试来捕捉显示显示的软件行为。 虽然这些技术很强大, 但由于需要执行的大量断言、 测试案例和变异版本, 计算成本非常昂贵。 要克服这一问题, 我们证明, 突变测试工具使用的变异器中有12.95%的小子集, 足以进行断言推断, 也就是说, 这个子集的变异器的变异器变异性显著不同, 即, 与突变测试文献经常引用的分包变异器组相比, 有71.59%的变异器不同, 并且可以通过学习为基础的方法静态近似近似近似。 特别是, 我们提出, AIMS, 一种选择的变异异体, 也就是说, 一组变异变体, 适合断言, 0. 58 MCC, 0. 0.79 准确度, 0.49 和 重新点数。 我们评估了46个程序, AIMS 的预测, 和显示它具有完全变异能力与全变变变变变变变变变变变异能力( ) 分析( 12. 49 比较), ), 而, 而 直判的直判的直判, 显示, 而 直判的直判的直判的直判的直判, 直判的直判的直判为 直径, 而 直判法 直判法 以 以 直判法 直判法 直判, 直判法 直判法 直判法 以 直判 直判法 直判法 以 以 以 以 以 直判 直判 直判 直判 直判 直判 直判 直判 以 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 直判 以 以 直判 直判 直判 直判 直判 直判 直判 直判

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月18日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员