Graph neural networks (GNNs) have shown the power in representation learning over graph-structured user-item interaction data for collaborative filtering (CF) task. However, with their inherently recursive message propagation among neighboring nodes, existing GNN-based CF models may generate indistinguishable and inaccurate user (item) representations due to the over-smoothing and noise effect with low-pass Laplacian smoothing operators. In addition, the recursive information propagation with the stacked aggregators in the entire graph structures may result in poor scalability in practical applications. Motivated by these limitations, we propose a simple and effective collaborative filtering model (SimRec) that marries the power of knowledge distillation and contrastive learning. In SimRec, adaptive transferring knowledge is enabled between the teacher GNN model and a lightweight student network, to not only preserve the global collaborative signals, but also address the over-smoothing issue with representation recalibration. Empirical results on public datasets show that SimRec archives better efficiency while maintaining superior recommendation performance compared with various strong baselines. Our implementations are publicly available at: https://github.com/HKUDS/SimRec.
翻译:图神经网络(GNN)已经在基于图结构的用户-物品交互数据的协同过滤(CF)任务中展示了其代表性学习的能力。然而,由于其本质上是相邻节点之间的递归消息传递,现有的基于GNN的CF模型可能会由于低通Laplacian平滑算子的过度平滑和噪声效果而生成难以区分和不准确的用户(物品)表示。此外,整个图结构中叠加聚合器的递归信息传播可能导致在实际应用中可扩展性较差。在这些限制的驱使下,我们提出了一种简单有效的协同过滤模型(SimRec),它结合了知识蒸馏和对比学习的能力。在SimRec中,可启用教师GNN模型和轻量级学生网络之间的自适应传输知识,以不仅保留全局协作信号,而且通过表示校准来解决过度平滑问题。公共数据集上的实证结果表明,相对于各种强基线,SimRec在保持卓越的推荐性能的同时实现了更好的效率。我们的实现可在https://github.com/HKUDS/SimRec上公开获取。