We study the learnability of symbolic finite state automata (SFA), a model shown useful in many applications in software verification. The state-of-the-art literature on this topic follows the query learning paradigm, and so far all obtained results are positive. We provide a necessary condition for efficient learnability of SFAs in this paradigm, from which we obtain the first negative result. The main focus of our work lies in the learnability of SFAs under the paradigm of identification in the limit using polynomial time and data, and its strengthening efficient identifiability, which are concerned with the existence of a systematic set of characteristic samples from which a learner can correctly infer the target language. We provide a necessary condition for identification of SFAs in the limit using polynomial time and data, and a sufficient condition for efficient learnability of SFAs. From these conditions we derive a positive and a negative result. The performance of a learning algorithm is typically bounded as a function of the size of the representation of the target language. Since SFAs, in general, do not have a canonical form, and there are trade-offs between the complexity of the predicates on the transitions and the number of transitions, we start by defining size measures for SFAs. We revisit the complexity of procedures on SFAs and analyze them according to these measures, paying attention to the special forms of SFAs: normalized SFAs and neat SFAs, as well as to SFAs over a monotonic effective Boolean algebra. This is an extended version of the paper with the same title published in CSL'22.


翻译:我们研究了符号有限状态自动机(SFA)的可学习性,这是一种在软件验证中非常有用的模型。关于这个主题的现有文献遵循查询学习范例,到目前为止都是积极的结果。我们提供了一个必要条件,以便在这个情况下高效学习SFA,在这个情况下我们得到了第一个负面结果。我们的工作主要集中在通过多项式时间和数据的极限识别范例的SFA的可学习性,以及其加强的高效可识别性,这关乎是否存在一个系统的特征样本,从中学习者可以正确地推断目标语言。我们提供了一个在多项式时间和数据的极限识别SFA的必要条件和一个SFA高效可学习性的充分条件。从这些条件中,我们获得了一个积极的和一个负面的结果。学习算法的性能通常被限制为目标语言表示的大小函数。由于SFA通常没有规范形式,并且在将谓词应用于转换方面存在复杂性与转换数量之间的权衡,因此我们首先定义了SFA的大小度量。我们重新审视了SFA的程序复杂性,并根据这些度量进行了分析,特别关注SFA的特殊形式:规范化的SFA和整洁的SFA,以及基于单调有效布尔代数的SFA。这是在CSL'22发表的同名论文的扩展版。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
27+阅读 · 2021年11月16日
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
20+阅读 · 2021年3月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员