Systems that are based on recursive Bayesian updates for classification limit the cost of evidence collection through certain stopping/termination criteria and accordingly enforce decision making. Conventionally, two termination criteria based on pre-defined thresholds over (i) the maximum of the state posterior distribution; and (ii) the state posterior uncertainty are commonly used. In this paper, we propose a geometric interpretation over the state posterior progression and accordingly we provide a point-by-point analysis over the disadvantages of using such conventional termination criteria. For example, through the proposed geometric interpretation we show that confidence thresholds defined over maximum of the state posteriors suffer from stiffness that results in unnecessary evidence collection whereas uncertainty based thresholding methods are fragile to number of categories and terminate prematurely if some state candidates are already discovered to be unfavorable. Moreover, both types of termination methods neglect the evolution of posterior updates. We then propose a new stopping/termination criterion with a geometrical insight to overcome the limitations of these conventional methods and provide a comparison in terms of decision accuracy and speed. We validate our claims using simulations and using real experimental data obtained through a brain computer interfaced typing system.


翻译:基于Bayesian对分类的递归性更新的系统限制了通过某些阻止/终止标准收集证据的成本,并相应执行决策。 公约中,根据预先确定的阈值,在(一) 国家后星分布的最大限度;和(二) 国家后子不确定性通常使用两种终止标准。在本文件中,我们提议对国家后子进程进行几何解释,并据此对使用这种常规终止标准的缺点进行逐点分析。例如,通过拟议的几何解释,我们表明,对国家后星体最大限度确定的信任阈值具有僵硬性,导致不必要的证据收集,而基于不确定性的阈值方法对类别数目脆弱,如果已经发现某些州候选人不可接受,则过早终止。此外,这两种终止方法都忽视了后子子进程的发展。我们然后提出一个新的停止/终止/终止标准,带有几何分辨的洞察力,以克服这些常规方法的局限性,并在决定的准确性和速度方面进行比较。我们用模拟和使用通过计算机接口系统获得的实际实验数据来验证我们的索赔。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员