Systems that are based on recursive Bayesian updates for classification limit the cost of evidence collection through certain stopping/termination criteria and accordingly enforce decision making. Conventionally, two termination criteria based on pre-defined thresholds over (i) the maximum of the state posterior distribution; and (ii) the state posterior uncertainty are commonly used. In this paper, we propose a geometric interpretation over the state posterior progression and accordingly we provide a point-by-point analysis over the disadvantages of using such conventional termination criteria. For example, through the proposed geometric interpretation we show that confidence thresholds defined over maximum of the state posteriors suffer from stiffness that results in unnecessary evidence collection whereas uncertainty based thresholding methods are fragile to number of categories and terminate prematurely if some state candidates are already discovered to be unfavorable. Moreover, both types of termination methods neglect the evolution of posterior updates. We then propose a new stopping/termination criterion with a geometrical insight to overcome the limitations of these conventional methods and provide a comparison in terms of decision accuracy and speed. We validate our claims using simulations and using real experimental data obtained through a brain computer interfaced typing system.
翻译:基于Bayesian对分类的递归性更新的系统限制了通过某些阻止/终止标准收集证据的成本,并相应执行决策。 公约中,根据预先确定的阈值,在(一) 国家后星分布的最大限度;和(二) 国家后子不确定性通常使用两种终止标准。在本文件中,我们提议对国家后子进程进行几何解释,并据此对使用这种常规终止标准的缺点进行逐点分析。例如,通过拟议的几何解释,我们表明,对国家后星体最大限度确定的信任阈值具有僵硬性,导致不必要的证据收集,而基于不确定性的阈值方法对类别数目脆弱,如果已经发现某些州候选人不可接受,则过早终止。此外,这两种终止方法都忽视了后子子进程的发展。我们然后提出一个新的停止/终止/终止标准,带有几何分辨的洞察力,以克服这些常规方法的局限性,并在决定的准确性和速度方面进行比较。我们用模拟和使用通过计算机接口系统获得的实际实验数据来验证我们的索赔。