Integrated phase I-II clinical trial designs are efficient approaches to accelerate drug development. In cases where efficacy cannot be ascertained in a short period of time, two-stage approaches are usually employed. When different patient populations are involved across stages, it is worth of discussion about the use of efficacy data collected from both stages. In this paper, we focus on a two-stage design that aims to estimate safe dose combinations with a certain level of efficacy. In stage I, conditional escalation with overdose control (EWOC) is used to allocate successive cohorts of patients. The maximum tolerated dose (MTD) curve is estimated based on a Bayesian dose-toxicity model. In stage II, we consider an adaptive allocation of patients to drug combinations that have a high probability of being efficacious along the obtained MTD curve. A robust Bayesian hierarchical model is proposed to allow sharing of information on the efficacy parameters across stages assuming the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The proposed methodology is assessed with extensive simulations motivated by a real phase I-II drug combination trial using continuous doses.


翻译:综合一至二阶段临床试验设计是加快药物发展的有效方法,在短期无法确定功效的情况下,通常采用两阶段方法;当不同病人群体分阶段参与时,值得讨论使用从两个阶段收集的功效数据;在本文件中,我们侧重于一个两阶段设计,旨在估计安全剂量组合和一定效能水平的安全剂量组合;在第一阶段,使用剂量过量控制的有条件升级(EWOC)来分配相继的病人组群;根据一种巴耶斯剂量毒性模型估计最大耐用剂量曲线。在第二阶段,我们考虑将病人的适应性分配到药物组合,这种组合在获得的MTD曲线上都极有可能有效;提议一个强有力的巴耶斯等级模型,以便分享各阶段功效参数的信息,假定有关参数可以互换或不可互换;在假设可交换性的情况下,指定随机效应分布,以主要效果参数为主要效果参数,以捕捉不同阶段之间差别的不确定性。在第二阶段,我们考虑将病人的适应性分配给药物组合,这种组合在获得MTD曲线的高度可能性上。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年8月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员