Reliably predicting the products of chemical reactions presents a fundamental challenge in synthetic chemistry. Existing machine learning approaches typically produce a reaction product by sequentially forming its subparts or intermediate molecules. Such autoregressive methods, however, not only require a pre-defined order for the incremental construction but preclude the use of parallel decoding for efficient computation. To address these issues, we devise a non-autoregressive learning paradigm that predicts reaction in one shot. Leveraging the fact that chemical reactions can be described as a redistribution of electrons in molecules, we formulate a reaction as an arbitrary electron flow and predict it with a novel multi-pointer decoding network. Experiments on the USPTO-MIT dataset show that our approach has established a new state-of-the-art top-1 accuracy and achieves at least 27 times inference speedup over the state-of-the-art methods. Also, our predictions are easier for chemists to interpret owing to predicting the electron flows.
翻译:可靠地预测化学反应的产物是合成化学的一个根本挑战。现有的机器学习方法通常通过按顺序形成其子部分或中间分子来产生反应产品。但是,这种自动递减方法不仅需要预先确定递增构造的顺序,而且排除了平行解码用于高效计算。为了解决这些问题,我们设计了一个非自动递减学习模式来预测一次反应。利用化学反应可以被描述为分子中电子的再分配这一事实,我们将反应作为一种任意的电子流,并用一个新的多点解码网络来预测。对USPTO-MIT数据集的实验表明,我们的方法已经建立了一个新的最先进的顶层-1的精确度,并至少实现了27倍的推导出最新技术方法的速度。此外,由于预测电子流,我们的预测对于化学家来说更容易解释。