A hierarchical logistic regression Bayesian model is proposed and implemented in R to model the probability of patient improvement corresponding to any given dosage of a certain drug. RStan is used to obtain samples from the posterior distributions via Markov Chain Monte-Carlo (MCMC) sampling. The effects of selecting different families of prior distributions are examined and finally, the posterior distributions are compared across RStan, and two other environments, namely PyMC, and AgenaRisk.
翻译:在R中提出并实施了一个等级级后勤回归贝耶斯模式,以模拟病人与某种药物的剂量相对应的改善概率。RStan用于通过Markov Caincle Monte-Carlo(MCMC)抽样从后方分布中获取样本。对选择先前分布的不同家族的影响进行了检查,最后,对塞族共和国和另外两个环境(即PyMC和AgennaRisk)的后方分布进行了比较。