The most widely used internal measure for clustering evaluation is the silhouette coefficient, whose naive computation requires a quadratic number of distance calculations, which is clearly unfeasible for massive datasets. Surprisingly, there are no known general methods to efficiently approximate the silhouette coefficient of a clustering with rigorously provable high accuracy. In this paper, we present the first scalable algorithm to compute such a rigorous approximation for the evaluation of clusterings based on any metric distances. Our algorithm hinges on a Probability Proportional to Size (PPS) sampling scheme, and, for any fixed $\varepsilon, \delta \in (0,1)$, it approximates the silhouette coefficient within a mere additive error $O(\varepsilon)$ with probability $1-\delta$, using a very small number of distance calculations. We also prove that the algorithm can be adapted to obtain rigorous approximations of other internal measures of clustering quality, such as cohesion and separation. Importantly, we provide a distributed implementation of the algorithm using the MapReduce model, which runs in constant rounds and requires only sublinear local space at each worker, which makes our estimation approach applicable to big data scenarios. We perform an extensive experimental evaluation of our silhouette approximation algorithm, comparing its performance to a number of baseline heuristics on real and synthetic datasets. The experiments provide evidence that, unlike other heuristics, our estimation strategy not only provides tight theoretical guarantees but is also able to return highly accurate estimations while running in a fraction of the time required by the exact computation, and that its distributed implementation is highly scalable, thus enabling the computation of internal measures for very large datasets for which the exact computation is prohibitive.


翻译:用于分组评估的最广泛内部测量是光速系数, 其天性计算需要以四倍数的距离计算, 而对于大型数据集来说显然不可行。 令人惊讶的是, 目前还没有已知的一般方法能够以严格可辨识的高度精确性强来高效地接近组合的双光系数。 在本文中, 我们提出了第一个精确的缩放算法, 用来计算基于任何长距离的组合评估。 我们的算法取决于一个概率比例到大小( PPPS) 的取样方法, 而对于任何固定的 $arrepslal,\delta\ in ( 0, 1, 1, $) 的计算方法, 并且对于任何固定的 $arlval 计算方法来说, 它接近于一个简单的添加错误的 $O(\ varepsil) 系数, 其概率值系数值, 概率为 $1-\ deltata, 概率计算。 我们还证明, 算法可以使其他内部的测算法得到精确性测算方法的精确的精确性测算, 。 我们的计算方法只能用来测量其内部测算。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员