We study the loss surface of a fully connected neural network with ReLU non-linearities, regularized with weight decay. We start by expressing the output of the network as a matrix determinant, which allows us to establish that the loss function is piecewise strongly convex on a bounded set where the training set error is below a threshold that we can estimate. This is used to prove that local minima of the loss function in this open set are isolated, and that every critical point below this error threshold is a local minimum, partially addressing an open problem given at the Conference on Learning Theory (COLT) 2015. Our results also give quantitative understanding of the improved performance if dropout is used as well as quantitative evidence that deeper networks are harder to train.


翻译:我们研究与RELU非线性完全连接的神经网络的损失表面,该神经网络随着重量衰减而正规化。我们首先将网络的输出作为矩阵决定因素表示,这使我们能够确定损失函数在一组捆绑的、训练组合错误低于我们可以估计的阈值的集合上具有片段强烈的共鸣。这被用来证明这一开放式组合中损失函数的本地微型是孤立的,并且这个错误阈值以下的每一个临界点都是局部最低点,部分解决了2015年学习理论会议(COLT)提出的一个未解决的问题。 我们的结果还从数量上理解了如果使用退学率的话,其表现会得到改善,并且有数量上的证据表明更深的网络更难于培训。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员