We introduce a new multi-dimensional nonlinear embedding -- Piecewise Flat Embedding (PFE) -- for image segmentation. Based on the theory of sparse signal recovery, piecewise flat embedding with diverse channels attempts to recover a piecewise constant image representation with sparse region boundaries and sparse cluster value scattering. The resultant piecewise flat embedding exhibits interesting properties such as suppressing slowly varying signals, and offers an image representation with higher region identifiability which is desirable for image segmentation or high-level semantic analysis tasks. We formulate our embedding as a variant of the Laplacian Eigenmap embedding with an $L_{1,p} (0<p\leq1)$ regularization term to promote sparse solutions. First, we devise a two-stage numerical algorithm based on Bregman iterations to compute $L_{1,1}$-regularized piecewise flat embeddings. We further generalize this algorithm through iterative reweighting to solve the general $L_{1,p}$-regularized problem. To demonstrate its efficacy, we integrate PFE into two existing image segmentation frameworks, segmentation based on clustering and hierarchical segmentation based on contour detection. Experiments on four major benchmark datasets, BSDS500, MSRC, Stanford Background Dataset, and PASCAL Context, show that segmentation algorithms incorporating our embedding achieve significantly improved results.
翻译:我们引入一个新的多维非线性嵌入( PPEWE Flat Flat 嵌入( PFE) ), 用于图像分割。 基于信号恢复少的理论, 将粉片平地嵌入到各种频道中, 试图恢复一个带有稀疏区域边界和聚集值分散的碎纸常态图像代表器。 由此产生的片片平地嵌入显示了令人感兴趣的属性, 例如压制缓慢不同的信号, 并且提供了高区域图像分割或高层次语义分析任务所需的图像可识别性。 我们将我们的嵌入作为 Laplaceian Eigenmap 嵌入 $L ⁇ 1, p} ( 0 < p\leq1) 的变异选项, 用于恢复一个带有稀释区域边界边界边界边界边界边界边界线的整变常态图像常态图像代表器。 我们根据 B=1, 1, 1} 美元的固定的平价嵌入, 并基于 BSB 的基调的基调的基调数据解算法, 和 AS AS 4 的基调的基调的基调的基调 AS AS AS 的基底压, 我们将这一算法化的基调化的基调化的基调化的基调化的基调的基调的基调的基调的基调算法框架框架。