One of the most important features of financial time series data is volatility. There are often structural changes in volatility over time, and an accurate estimation of the volatility of financial time series requires careful identification of change-points. A common approach to modeling the volatility of time series data is the well-known GARCH model. Although the problem of change-point estimation of volatility dynamics derived from the GARCH model has been considered in the literature, these approaches rely on parametric assumptions of the conditional error distribution, which are often violated in financial time series. This may lead to inaccuracies in change-point detection resulting in unreliable GARCH volatility estimates. This paper introduces a novel change-point detection algorithm based on a semiparametric GARCH model. The proposed method retains the structural advantages of the GARCH process while incorporating the flexibility of nonparametric conditional error distribution. The approach utilizes a penalized likelihood derived from a semiparametric GARCH model and an efficient binary segmentation algorithm. The results show that in terms of change-point estimation and detection accuracy, the semiparametric method outperforms the commonly used Quasi-MLE (QMLE) and other variations of GARCH models in wide-ranging scenarios.


翻译:金融时序数据的最重要特征之一是波动性。随着时间的变化,经常会出现结构性变化,准确估计财务时序的波动性需要仔细确定变化点。一个共同的模型计算时间序列数据波动性的方法是众所周知的GARCH模型。虽然文献中考虑了从GARCH模型中得出的波动动态变化点估计问题,但这些方法依赖于有条件差错分布的参数假设,而这些假设往往在财务时序中被违反。这可能导致改变点检测不准确,从而导致GRCH波动性估计数不可靠。本文采用了一种新的基于半参数GARCH模型的改变点检测算法。拟议方法保留了GARCH进程的结构优势,同时纳入了非参数性有条件差错分布的灵活性。该方法使用了半参数GARCH模型和高效的二分法算法产生的受抑制的可能性。结果显示,在变化点估计和检测准确性测得方面,半参数方法优于通用的Quasi-MLE模型中通用的Quasir-MLE模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员