Quasi-equilibrium approximation is a widely used closure approximation approach for model reduction with applications in complex fluids, materials science, etc. It is based on the maximum entropy principle and leads to thermodynamically consistent coarse-grain models. However, its high computational cost is a known barrier for fast and accurate applications. Despite its good mathematical properties, there are very few works on the fast and efficient implementations of quasi-equilibrium approximations. In this paper, we give efficient implementations of quasi-equilibrium approximations for antipodally symmetric problems on unit circle and unit sphere using polynomial and piecewise polynomial approximations. Comparing to the existing methods using linear or cubic interpolations, our approach achieves high accuracy (double precision) with much less storage cost. The methods proposed in this paper can be directly extended to handle other moment closure approximation problems.
翻译:准平衡近似值是一种广泛使用的封闭近似值方法,用于使用复杂的液体、材料科学等应用来减少模型。它基于最大对流原则,并导致热动力一致的粗粗谷物模型。然而,它的高计算成本是已知的快速和准确应用的障碍。尽管它具有良好的数学特性,但关于快速和高效地实施准平衡近似值的工作却很少。在本文中,我们通过多球和片形多球近似值,对单位圆和单位球体的反对称问题有效地实施准平衡近似值。与使用线形或立方相交织的现有方法相比,我们的方法以低得多的存储成本实现了高精度(双精度 ) 。 本文中建议的方法可以直接扩展, 以便处理其他时的关闭近似近似问题。