We consider a variant of the hide-and-seek game in which a seeker inspects multiple hiding locations to find multiple items hidden by a hider. Each hiding location has a maximum hiding capacity and a probability of detecting its hidden items when an inspection by the seeker takes place. The objective of the seeker (resp. hider) is to minimize (resp. maximize) the expected number of undetected items. This model is motivated by strategic inspection problems, where a security agency is tasked with coordinating multiple inspection resources to detect and seize illegal commodities hidden by a criminal organization. To solve this large-scale zero-sum game, we leverage its structure and show that its mixed strategies Nash equilibria can be characterized using their unidimensional marginal distributions, which are Nash equilibria of a lower dimensional continuous zero-sum game. This leads to a two-step approach for efficiently solving our hide-and-seek game: First, we analytically solve the continuous game and compute the equilibrium marginal distributions. Second, we derive a combinatorial algorithm to coordinate the players' resources and compute equilibrium mixed strategies that satisfy the marginal distributions. We show that this solution approach computes a Nash equilibrium of the hide-and-seek game in quadratic time with linear support. Our analysis reveals a complex interplay between the game parameters and allows us to evaluate their impact on the players' behaviors in equilibrium and the criticality of each location.
翻译:我们考虑一个隐藏和寻找游戏的变式, 寻找者检查多个隐藏地点, 以查找隐藏者隐藏的多个物品。 每个隐藏地点都有最大的隐藏能力, 当寻找者进行检查时, 发现其隐藏的物品的可能性最大。 寻找者( resp. 隐藏者) 的目标是最大限度地减少( resp. 最大化) 预期的未发现物品数量。 这个模式的动机是战略检查问题, 安全机构的任务是协调多个检查资源, 以发现和没收犯罪组织隐藏的非法商品。 为了解决这个大规模零和游戏, 我们利用其结构, 并显示其混合战略 Nash equilibria 可以使用其单维边际边际分布来描述其隐藏的隐藏物品。 寻求者( respin. 隐藏隐藏隐藏连续零和游戏游戏游戏游戏的低维度分布) 的目标是通过两步方法有效地解决我们的隐藏和探索游戏: 首先, 我们分析解决持续的游戏, 并计算平衡边际分布。 其次, 我们用组合算算法来协调玩家的资源, 并配置平衡的混合策略, 隐藏其边际平衡的策略, 我们用游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏的平局性分析可以显示。 我们的平局的平局 。