Biometric systems are widely used for identity verification and identification, including authentication (i.e., one-to-one matching to verify a claimed identity) and identification (i.e., one-to-many matching to find a subject in a database). The matching process relies on measuring similarities or dissimilarities between a fresh biometric template and enrolled templates. The False Match Rate FMR is a key metric for assessing the accuracy and reliability of such systems. This paper analyzes biometric systems based on their FMR, with two main contributions. First, we explore untargeted attacks, where an adversary aims to impersonate any user within a database. We determine the number of trials required for an attacker to successfully impersonate a user and derive the critical population size (i.e., the maximum number of users in the database) required to maintain a given level of security. Furthermore, we compute the critical FMR value needed to ensure resistance against untargeted attacks as the database size increases. Second, we revisit the biometric birthday problem to evaluate the approximate and exact probabilities that two users in a database collide (i.e., can impersonate each other). Based on this analysis, we derive both the approximate critical population size and the critical FMR value needed to bound the likelihood of such collisions occurring with a given probability. These thresholds offer insights for designing systems that mitigate the risk of impersonation and collisions, particularly in large-scale biometric databases. Our findings indicate that current biometric systems fail to deliver sufficient accuracy to achieve an adequate security level against untargeted attacks, even in small-scale databases. Moreover, state-of-the-art systems face significant challenges in addressing the biometric birthday problem, especially as database sizes grow.
翻译:暂无翻译