Symbol-level precoding (SLP), which converts the harmful multi-user interference (MUI) into beneficial signals, can significantly improve symbol-error-rate (SER) performance in multi-user communication systems. While enjoying symbolic gain, however, the complicated non-linear symbol-by-symbol precoder design suffers high computational complexity exponential with the number of users, which is unaffordable in realistic systems. In this paper, we propose a novel low-complexity grouped SLP (G-SLP) approach and develop efficient design algorithms for typical max-min fairness and power minimization problems. In particular, after dividing all users into several groups, the precoders for each group are separately designed on a symbol-by-symbol basis by only utilizing the symbol information of the users in that group, in which the intra-group MUI is exploited using the concept of constructive interference (CI) and the inter-group MUI is also effectively suppressed. In order to further reduce the computational complexity, we utilize the Lagrangian dual, Karush-Kuhn-Tucker (KKT) conditions and the majorization-minimization (MM) method to transform the resulting problems into more tractable forms, and develop efficient algorithms for obtaining closed-form solutions to them. Extensive simulation results illustrate that the proposed G-SLP strategy and design algorithms dramatically reduce the computational complexity without causing significant performance loss compared with the traditional SLP schemes.
翻译:将有害的多用户传统干扰(MUI)转换成有益的信号,从而大大改善多用户通信系统中的符号-error-ror-ror-lax(SER)性能。不过,复杂的非线性符号bysymbol 预编码设计虽然享有象征性的好处,但复杂的非线性符号逐符号预编码设计却因用户数目的计算复杂性而倍增,在现实系统中无法负担。在本文件中,我们提议采用新的低兼容性分组的SLP(G-SLP)方法,并针对典型的最高公平和最小化问题制定有效的设计算法。特别是,在将所有用户分成若干组后,每个组的预编码仅通过使用该组用户的符号信息而单独设计成一个符号-逐个符号/符号/符号预编码预编码器。在使用该组内部MUI时采用了建设性干预的概念(CI),而集团间MUI也提议有效地加以抑制。为了进一步降低计算复杂性,我们利用Lagrangeian 双轨、Karush-Kuhn-Tuck(Track) 比较的计算式计算式计算方法,从而将成本-ral-al-rageal-commamamaxleval-ragedal-ragedal 发展成一个重大的系统化方法,从而不产生重大的系统化为较大规模的计算式的系统化方法,从而制式的缩缩缩缩缩算方法,使主要的计算式的计算式的计算式的系统化方法,从而使SLmaxx。