External validity is often questionable in empirical research, especially in randomized experiments due to the trade-off between internal validity and external validity. To quantify the robustness of external validity, one must first conceptualize the gap between a sample that is fully representative of the target population (i.e., the ideal sample) and the observed sample. Drawing on Frank & Min (2007) and Frank et al. (2013), I define such gap as the unobserved sample and intend to quantify its relationship with the null hypothesis statistical testing (NHST) in this study. The probability of invalidating a causal inference due to limited external validity, i.e., the PEV, is the probability of failing to reject the null hypothesis based on the ideal sample provided the null hypothesis has been rejected based on the observed sample. This study illustrates the guideline and the procedure of evaluating external validity with the PEV through an empirical example (i.e., Borman et al. (2008)). Specifically, one would be able to locate the threshold of the unobserved sample statistic that would make the PEV higher than a desired value and use this information to characterize the unobserved sample that would render external validity of the research in question less robust. The PEV is shown to be linked to statistical power when the NHST is thought to be based on the ideal sample.


翻译:在实证研究中,特别是在由于内部有效性与外部有效性之间的权衡而随机进行的实验中,外部有效性往往有疑问。为了量化外部有效性的稳健性,首先必须设想完全代表目标人群的样本(即理想样本)与观察到的样本之间的差距。根据Frank & Min(2007年)和Frank等人(2013年),我界定了未观察到的样本等差距,并打算量化其与本研究报告中无效假设统计测试(NHST)的关系。由于外部有效性有限,即PEV,导致因因果关系推论无效的可能性是,如果根据观察到的样本否定了无效假设,那么根据理想样本拒绝无效假设的可能性。这项研究通过一个经验性实例(即Borman等人(2008年))说明评估PEV外部有效性的准则和程序。具体地说,如果将PEV比预期值高,那么使用这一信息来描述未观察到的样本,如果将使PEV与理想的样本的外部有效性联系起来,那么将证明PEV与理想的样本的外部有效性与理想性关系不大,那么,就能够确定。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
0+阅读 · 2022年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员