We introduce a unified framework for group equivariant networks on homogeneous spaces derived from a Fourier perspective. We address the case of feature fields being tensor valued before and after a convolutional layer. We present a unified derivation of kernels via the Fourier domain by taking advantage of the sparsity of Fourier coefficients of the lifted feature fields. The sparsity emerges when the stabilizer subgroup of the homogeneous space is a compact Lie group. We further introduce an activation method via an elementwise nonlinearity on the regular representation after lifting and projecting back to the field through an equivariant convolution. We show that other methods treating features as the Fourier coefficients in the stabilizer subgroup are special cases of our activation. Experiments on $SO(3)$ and $SE(3)$ show state-of-the-art performance in spherical vector field regression, point cloud classification, and molecular completion.
翻译:我们从Fourier的角度为同质空间的群变网络引入了一个统一的框架。我们从Fourier的角度处理地貌域在进化层之前和之后都得到高价估价的情况。我们利用已取消地貌的Fourier系数的宽度,通过Fourier域对内核进行统一衍生。当同质空间的稳定性分组是一个紧凑的小组时,就会出现聚变现象。我们进一步引入了一种激活方法,即从元素角度讲,在提升和投射到场后,通过等值共振后,正常代表物的不线性。我们表明,将地貌作为稳定器分组中的四倍系数处理的其他方法是我们激活的特例。关于美元SO(3)和美元SE(3)的实验显示了球矢量场回归、点云分级和分子完成的状态。