We propose a simple method for simulating a general class of non-unitary dynamics as a linear combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem into a dilated linear system problem, or on the spectral mapping theorem. The latter is the mathematical foundation of many quantum algorithms for solving a wide variety of tasks involving non-unitary processes, such as the quantum singular value transformation (QSVT). The LCHS method can achieve optimal cost in terms of state preparation. We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.
翻译:我们提出一个简单的方法来模拟一般非统一动态类别,作为汉密尔顿模拟(LCHS)问题的线性组合。 LCHS并不依靠将问题转换成膨胀的线性系统问题,也不依靠光谱绘图理论,后者是许多量子算法的数学基础,用以解决涉及非统一过程的各种任务,例如量单值转换(QSVT)。LCHS方法可以达到国家准备方面的最佳成本。我们还展示了利用复杂吸收潜在方法进行开放式量性模拟,几乎最充分地依赖所有参数的应用。</s>