This paper investigates the distributed event-triggered control problem for a class of uncertain pure-feedback nonlinear multi-agent systems (MASs) with polluted feedback. Under the setting of event-triggered control, substantial challenges exist in both control design and stability analysis for systems in more general non-affine pure-feedback forms wherein all state variables are not directly and continuously available or even polluted due to sensor failures, and thus far very limited results are available in literature. In this work, a nominal control strategy under regular state feedback is firstly developed by combining neural network (NN) approximating with dynamic filtering technique, and then a NN-based distributed event-triggered control strategy is proposed by resorting to a novel replacement policy, making the non-differentiability issue arising from event-triggering setting completely circumvented. Besides, the sensor ineffectiveness is accommodated automatically without using fault detection and diagnosis unit or controller reconfiguration. It is shown that all the internal signals are semi-globally uniformly ultimately bounded (SGUUB) with the aid of several vital lemmas, while the outputs of all the subsystems reaching a consensus without infinitely fast execution. Finally, the efficiency of the developed algorithm are verified via numerical simulation.
翻译:本文调查了一组不确定的纯反向非线性多试剂系统(MAS)的分布式事件触发控制问题。在设定事件触发控制的情况下,对更一般的非节制纯反退形式的系统,在控制设计和稳定性分析方面都存在重大挑战,因为所有状态变量都无法直接和持续提供,甚至由于传感器故障而污染,而且到目前为止,文献中的结果非常有限。在这项工作中,定期国家反馈下的名义控制战略首先通过将神经网络与动态过滤技术相近的神经网络(NNN)和动态过滤技术相结合来制定,然后提出基于NNN的分布式事件触发控制战略,办法是采用新的替代政策,使因事件触发环境完全规避而产生的无差别性问题得到解决。此外,在不使用错误检测和诊断单位或控制器重组的情况下,所有传感器的无效性是自动调节的。 这表明,所有内部信号都是半全球一致的(SGUUUB)与几个关键中枢的辅助器(SUB)结合,然后提出基于NNM的分布式事件触发控制战略,通过采用新的替代政策,使所有子子系统最终能够快速地进行模拟,最终实现数字分析。</s>