Unsupervised generation of clothed virtual humans with various appearance and animatable poses is important for creating 3D human avatars and other AR/VR applications. Existing methods are either limited to rigid object modeling, or not generative and thus unable to synthesize high-quality virtual humans and animate them. In this work, we propose AvatarGen, the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints, while only requiring 2D images for training. Specifically, it extends the recent 3D GANs to clothed human generation by utilizing a coarse human body model as a proxy to warp the observation space into a standard avatar under a canonical space. To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space. To improve geometry quality of the generated human avatars, it leverages signed distance field as geometric representation, which allows more direct regularization from the body model on the geometry learning. Benefiting from these designs, our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs. Furthermore, it is competent for many applications, e.g., single-view reconstruction, reanimation, and text-guided synthesis. Code and pre-trained model will be available.
翻译:在这项工作中,我们提出AvatarGen,这是不仅能够以不同外观、而且能够充分控制外观和视角的非硬性人类生成的首个方法,但仅需要 2D 图像来进行培训。具体地说,它将最近的 3D GAN 扩展为以3D 人类代谢和其他AR/VR 应用程序。现有的方法要么局限于僵硬的物体模型模型,要么没有基因化,因而无法合成高质量的虚拟人类,因而无法合成这些高品质的虚拟人类。在这项工作中,我们建议AvatarGen,这是不仅能够使非硬性人类代谢的外观和外观不仅具有不同外观,而且能够充分控制外观和视角的第一种方法。它把最近的 3D GAN 扩展为以人类代谢的代谢。它使用粗糙的人体代谢模型作为代谢将观察空间转换成一个标准的代谢式模型,将观测空间转换成一个标准型的天体。对于非硬性动态动力学来说,我们的方法可以引入一个变形的变形网络来学习高品质的模型, 并且能够产生高品质的模型, 和高品质的外观的人类的外观。