We consider a collection of statistically identical two-state continuous time Markov chains (channels). A controller continuously selects a channel with the view of maximizing infinite horizon average reward. A switching cost is paid upon channel changes. We consider two cases: full observation (all channels observed simultaneously) and partial observation (only the current channel observed). We analyze the difference in performance between these cases for various policies. For the partial observation case with two channels, or an infinite number of channels, we explicitly characterize an optimal threshold for two sensible policies which we name "call-gapping" and "cool-off". Our results present a qualitative view on the interaction of the number of channels, the available information, and the switching costs.


翻译:我们考虑的是一组统计上完全相同的连续两州时间马可夫链(马可夫链)。控制者不断选择一个频道,以期最大限度地获得无限平均回报。在频道变化时支付转换成本。我们考虑两个案例:全面观察(同时观察所有频道)和部分观察(只观察当前频道 ) 。我们分析不同政策中这些案例的绩效差异。对于两个频道或无限多的频道的局部观察案例,我们明确地为两个明智政策设定了最佳门槛,我们称之为“呼叫抓捕”和“冷却 ” 。我们的结果对频道数量、现有信息和转换成本之间的相互作用提供了定性观点。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
金融人工智能,40页pdf
专知会员服务
143+阅读 · 2021年10月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
12+阅读 · 2020年6月20日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员