When the sizes of the state and action spaces are large, solving MDPs can be computationally prohibitive even if the probability transition matrix is known. So in practice, a number of techniques are used to approximately solve the dynamic programming problem, including lookahead, approximate policy evaluation using an m-step return, and function approximation. In a recent paper, (Efroni et al. 2019) studied the impact of lookahead on the convergence rate of approximate dynamic programming. In this paper, we show that these convergence results change dramatically when function approximation is used in conjunction with lookout and approximate policy evaluation using an m-step return. Specifically, we show that when linear function approximation is used to represent the value function, a certain minimum amount of lookahead and multi-step return is needed for the algorithm to even converge. And when this condition is met, we characterize the finite-time performance of policies obtained using such approximate policy iteration. Our results are presented for two different procedures to compute the function approximation: linear least-squares regression and gradient descent.


翻译:当状态和动作空间的大小很大时,即使知道概率转换矩阵,解决 MDP 的计算可能令人望而却步。因此,在实践中,使用一些技术来大致解决动态编程问题,包括外观、使用 m 步返回的近似政策评价以及函数近似。在最近的一篇论文中,(Efroni 等人, 2019)研究了外观对近似动态编程的趋同率的影响。在本文中,我们显示当函数近似与图示和使用 m 步返回的近似政策评价同时使用时,这些趋同率会发生巨大变化。具体地说,我们表明当使用线性函数近似来代表值函数时,需要一定数量的外观和多步返回才能使算法趋同。在满足这一条件时,我们用这种近似政策 Iteration 来描述获得的政策的有限时间性表现。我们的结果用于两种不同的计算函数近似值的程序:线性最小值回归和梯度下降。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新《经济学中的强化学习》2020大综述,42页pdf128篇文献
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员