The usually reported pixel resolution of single pixel imaging (SPI) varies between $32 \times 32$ and $256 \times 256$ pixels falling far below imaging standards with classical methods. Low resolution results from the trade-off between the acceptable compression ratio, the limited DMD modulation frequency, and reasonable reconstruction time, and has not improved significantly during the decade of intensive research on SPI. In this paper we show that image measurement at the full resolution of the DMD, which lasts only a fraction of a second, is possible for sparse images or in a situation when the field of view is limited but is a priori unknown. We propose the sampling and reconstruction strategies that enable us to reconstruct sparse images at the resolution of $1024 \times 768$ within the time of $0.3~$s. Non-sparse images are reconstructed with less details. The compression ratio is on the order of $0.4 \%$ which corresponds to an acquisition frequency of $7~$Hz. Sampling is differential, binary, and non-adaptive, and includes information on multiple partitioning of the image which later allows us to determine the actual field of view. Reconstruction is based on the differential Fourier domain regularized inversion (D-FDRI). The proposed SPI framework is an alternative to both adaptive SPI, which is challenging to implement in real time, and to classical compressive sensing image recovery methods, which are very slow at high resolutions.


翻译:通常报告的单像素成像(STI)的像素解析度在32 32美元到256美元之间不等。 通常报告的单像素成像(SPI)的像素解解析度在32 32美元到256美元之间不等, 远低于古典方法的象素标准。 低解度来自可接受的压缩比例、有限的DMD调制频率和合理的重建时间之间的权衡,在对SPI进行深入研究的十年期间,没有显著改善。 在本文中,我们显示DMD完全解析的图像测量值为0.4 + 美元,这只维持一秒的一小部分,可以用于稀释图像,或者在视野有限但先天未知的情况下。 我们建议采样和重建战略,使我们能够在1024\ 时间为768美元分辨率的分辨率解析中重建稀少的图像,在0.3美元到合理的SPIFF框架的常规调整后,SPI的实地调整率为0.4+RI的恢复方式,在正常的调整中,在正常的调整中,在正常的调整框架的调整后,在正常的调整后,在正常的调整后,在SFDFD框架中,在正常的调整后,在正常的调整中,在正常的调整的调整后,这是的调整后,在正常的调整中,在正常的调整的调整的调整中,在正常的调整后,在正确的调整的调整后,在正常的调整。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员