From wearables to powerful smart devices, modern automatic speech recognition (ASR) models run on a variety of edge devices with different computational budgets. To navigate the Pareto front of model accuracy vs model size, researchers are trapped in a dilemma of optimizing model accuracy by training and fine-tuning models for each individual edge device while keeping the training GPU-hours tractable. In this paper, we propose Omni-sparsity DNN, where a single neural network can be pruned to generate optimized model for a large range of model sizes. We develop training strategies for Omni-sparsity DNN that allows it to find models along the Pareto front of word-error-rate (WER) vs model size while keeping the training GPU-hours to no more than that of training one singular model. We demonstrate the Omni-sparsity DNN with streaming E2E ASR models. Our results show great saving on training time and resources with similar or better accuracy on LibriSpeech compared to individually pruned sparse models: 2%-6.6% better WER on Test-other.


翻译:从磨损设备到强大的智能设备,现代自动语音识别(ASR)模型运行在各种边缘设备上,计算预算各不相同。为了浏览Pareto模型精确度相对于模型大小的模型,研究人员陷入了通过培训和微调模型优化模型精确度的两难境地,而每个单个边缘设备则保持培训GPU-小时的可移动性。在本文中,我们提议Omni-parity DNN, 可以在其中运行一个单一神经网络, 以生成各种模型大小的优化模型。 我们为Omni- sparity DNN制定培训战略, 使其能够在Pareto单词速率(WER)相对于模型大小的前沿找到模型,同时将培训GPU-小时保持在不超过培训的单一模型。 我们用 E2E ASR 模型演示Omni- sparity DNNN。 我们的结果显示,在LiSpeech 上的培训时间和资源方面节省了大量类似或更高的精度。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
124+阅读 · 2022年4月21日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
124+阅读 · 2022年4月21日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员